Tag-Archive for » etanol celulósico «

quarta-feira, janeiro 27th, 2010 | Author: admin

The National Laboratory of Science and Technology of Bioethanol (CTBE), just inaugurated in the city of Campinas (State of S. Paulo), on January 22, 2010, will be the coordination center for researches on the production of bioethanol, from the plantation to the development of automotive motors.

CTBE is born from a study conceived in 2007 about the challenges for the production of ethanol in Brazil for the next 15 years.  One of its targets was to answer if it would be possible to multiply by ten - but in a sustainable way - the current production of ethanol, until 2015.  The future amount would be equal to 250 billion annual liters, which should be enough to replace 10% of the gasoline consumed in the planet.

“Many of the identified obstacles demand investments in science to solve them”, says  Marco Aurélio Pinheiro Lima, director of the new laboratory.

CTBE will gather the efforts of public research institutions and private laboratories from the whole country that already work on bioethanol. This wide effort is also the aim of the Research program in Bioenergy  (BIOEN) financed by The State of São Paulo Research Foundation (FAPESP).

The BIOEN Program will support the laboratory infrastructure, explains Prof. Marcos Buckeridge, at University of São Paulo, who is both scientific director of CTBE and coordinator of BIOEN Biomass division.

“We are creating a Brazilian system for bioenergies that will gather the researches of an elite of specialists that are dispersed throughout  the country”, announces Buckeridge.

The laboratory has counted on investments of R$ 69 million, and is already developing researches, many of them with the support of Fapesp, that already invested about of R$ 2 million. Currently with 60 employees, CTBE should hire 170 until 2013.

At the inauguration, the new institution has already signed cooperation agreements with the he Brazilian Agricultural Research Corporation  (Embrapa), the London Imperial College (UK)  and the Lund University (Sweden).

Cellulosic ethanol

The efforts of the research of CTBE will be concentrated in the development of the ethanol of second generation, produced from sugarcane cellulose.  Although corresponding to two thirds of the available biomass, sugarcane pulp and straw  are not yet enough used.

Buckeridge explains that breaking the cellulose wall is at the core of research at CTBE. The enzymes that may help in the biological decomposition will thoroughly be studied at the laboratories.

CTBE is neighbour to two other laboratories in Campinas: the Brazilian Synchrotron Light Laboratory (LNLS) and the National Biosciences Laboratory (LNBio). “Be close to these facilities gives us access to cutting edge resources such as the Synchrotron Light ring that helps to unmask the structure of the enzymes, and to specific bioinformatics software developed by LNBio”,  Buckeridge says.  The bioethanol researchers will be able to test their results under industrial structure at CTBE, thus adapting the academic research to the needs of industry.

LNBio, LNLS and CTBE will be coordinated by an the recently-created the National Center of Research in Energy and Materials (CNPEM), under the direction of physicist Rogério Cerqueira Leite.

Sugarcane direct planting

Under the agreement with Embrapa, the two institutions will together invest in advanced technology, to guarantee the Brazilian production of sugarcane ethanol. The test for this cooperation will be the direct planting of sugarcane, from North to South of Brazil, believes Geraldo Eugênio de França, Embrapa’s CEO.

Direct planting is a technique of agricultural handling, used mainly in cereals fields, which spares the preparation of soil in the planting. Embrapa already works since more than three decades with this technique that reduces costs, keeps the soil nutrients and uses water in a more rational way.

The Agricultural Program of CTBE will develop studies on agricultural machines and low impact crop mechanization. Sugarcane diseases and reaction to herbicides in humid soil, as in direct planting situation, will be also submitted to research.

CTBE and Embrapa will study the impacts of the direct planting in cane in the most diverse climates, soils, rain volume and field administration. The first experiments should happen in plantations in the State of São Paulo. Then similar tests will be accomplished in other producing areas, such as the Cerrado and the coastal boards of the Northeast.

The collaboration between CTBE and Embrapa may continue in the production of enzymes for the hydrolysis of the cane pulp, biochemistry and physiology of plants, fixation of nitrogen and absorption of CO2 by the plant.

© Webioenergias.com.br , with information by Fapesp and  Embrapa

quarta-feira, janeiro 27th, 2010 | Author: admin

O Laboratório Nacional de Ciência e Tecnologia do Bioetanol (CTBE), recém-inaugurado em Campinas (SP), no dia 22 de janeiro de 2010, vai abranger pesquisas relacionadas a todas as etapas de produção do etanol, desde a plantação até o desenvolvimento de motores automotivos.

O CTBE nasceu de um estudo sobre os desafios da produção brasileira de etanol para os próximos 15 anos. Concebido em 2007, o estudo tinha como uma das metas responder se seria possível multiplicar por dez, de forma sustentável, a produção atual de etanol até o ano de 2015. O futuro montante equivaleria a 250 bilhões de litros anuais, o que seria suficiente para substituir 10% da gasolina consumida no planeta, de acordo com o estudo.

“Muitos dos gargalos identificados demandam investimentos em ciência para resolvê-los”, conta o diretor do Laboratório, Marco Aurélio Pinheiro Lima.

O CTBE deverá reunir esforços de instituições de pesquisa de todo o país que atuam no desenvolvimento do bioetanol, inclusive laboratórios da iniciativa privada.  A abrangência dos trabalhos coincide com a do Programa de Pesquisa em Bioenergia (BIOEN) da Fapesp (Fundação de Amparo à Pesquisa do Estado de São Paulo).

O Programa BIOEN da Fapesp deverá contribuir com o laboratório e também se beneficiar da sua infraestrutura, explica o professor da Universidade de São Paulo, Marcos Buckeridge, diretor científico do CTBE e coordenador da divisão de Biomassa do BIOEN. “Está se formando um sistema brasileiro de bioenergia que reunirá os trabalhos de uma elite de especialistas espalhados pelo país”, anuncia.

O laboratório contou com investimentos da ordem de R$ 69 milhões e já possui pesquisas em andamento, muitas delas com o apoio da Fapesp, que já investiu cerca de R$ 2 milhões em trabalhos. Atualmente com 60 empregados, o CTBE espera ter cerca de 170 colaboradores fixos até 2013.

Já na inauguração foram assinados acordos para cooperação em pesquisas entre o CTBE e a Empresa Brasileira de Pesquisa Agropecuária (Embrapa), o Imperial College London, da Inglaterra e a Lund University, da Suécia.

Etanol de celulose

Os esforços da pesquisa do CTBE estarão concentrados no desenvolvimento do etanol de segunda geração, produzido a partir da celulose da cana-de-açúcar. Embora correspondam a dois terços da biomassa disponível, o bagaço e a palha da cana ainda não são suficientemente aproveitadas. Buckeridge explica que no coração dessa pesquisa está o processo de quebra da celulose. Na decomposição biológica essa massa é quebrada com o auxílio de enzimas que poderão ser estudadas a fundo nos laboratórios do CTBE.

Ao lado do novo laboratório funcionam o Laboratório Nacional de Luz Síncrotron (LNLS) e o Laboratório Nacional de Biociências (LNBio). “Estar perto dessas instalações nos dá acesso a recursos de primeira linha como o anel de luz síncrotron, que ajuda desvendar a estrutura das enzimas, e software específico de bioinformática, desenvolvidos pelo LNBio”, exemplifica Buckeridge.

Embora autônomos, o LNBio, o LNLS e o CTBE serão coordenados por uma instância recém-criada pelo governo federal, o Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), que será o físico Rogério Cerqueira Leite como diretor.

Os pesquisadores de bioetanol poderão testar seus resultados em processos industriais no CTBE. O diretor científico do CTBE explica que os pesquisadores deverão interagir com os engenheiros do laboratório e, assim, adaptar a pesquisa acadêmica às necessidades da indústria. Esses testes serão executados em uma miniplanta industrial que está sendo construída e fará parte das instalações do CTBE.

Buckeridge espera promover, a partir de 2011, um megaexperimento em formato de workshop, em que todos os grandes trabalhos de pesquisa em bioetanol possam se apresentar. Um dos objetivos do evento será avaliar e acompanhar o “estado da arte” da pesquisa científica nacional em bioetanol. Além do combustível, os trabalhos deverão desenvolver uma cadeia de subprodutos oriundos da cana-de-açúcar como polímeros e medicamentos, nos moldes do que ocorreu com o desenvolvimento do petróleo. Esses novos materiais devem estabilizar a indústria da cana, que hoje conta com apenas dois produtos principais: etanol e açúcar.

Plantio direto da cana

Segundo o acordo com a Embrapa, as duas instituições assumem o compromisso de, em conjunto, investir em tecnologia avançada, para garantir a produção brasileira de etanol, a partir da cana-de-açúcar e de materiais lignocelulósicos (à base de celulose, como resíduos de cana ou madeira). Um dos desafios da Embrapa Agroenergia, unidade da empresa que tem uma interface muito grande com o CTBE, é tornar mais baixo o custo desse processo, explica o diretor-executivo da Embrapa, Geraldo Eugênio de França.

O diretor da Embrapa, acredita que a união das forças agrícola da Embrapa e industrial do CTBE impulsionará os trabalhos. A Embrapa, o CTBE e as empresas manterão relações mais estreitas. O teste, para o diretor, será o plantio direto da cana-de-açúcar, de Norte a Sul do Brasil.

O plantio direto é uma técnica de manejo agrícola, empregada na cultura de cereais, que dispensa o preparo do solo no plantio. A Embrapa já trabalha há mais de três décadas com este sistema, que reduz custos, conserva os nutrientes do solo e utiliza a água de forma mais racional.

O Programa Agrícola do CTBE estuda formas de implementar o plantio direto na cultura de cana. A tarefa, entretanto, tem alguns desafios tecnológicos significativos, como o desenvolvimento de um maquinário agrícola que reduza o tráfego de máquinas sobre a área plantada.

Para solucionar este gargalo, o CTBE desenvolve o projeto de uma Estrutura de Tráfego Controlado (ETC) que atuará em todo o ciclo agrícola da cana, do plantio à colheita. Segundo o diretor do Programa Agrícola do CTBE Oscar Braunbeck, a ETC deve reduzir a área de terreno trafegada de 60% para 13% e o custo da colheita mecanizada de cana em até 30%. A largura maior do equipamento (9m) também permitirá a mecanização da colheita em terrenos com até 20% de inclinação. Hoje, este número se restringe a 12%.

O Programa Agrícola do CTBE tem uma vertente voltada aos estudos de mecanização de baixo impacto e outra ligada ao ciclo agronômico da cana. Esta última será liderada pela Embrapa. Pesquisadores acompanharão o desempenho agronômico da cana sob o regime de plantio direto com baixo tráfego, em comparação ao plantio convencional. As variedades de cana que melhor se adaptam ao plantio direto o comportamento de doenças e pragas e a reação da planta aos herbicidas em situações de solo úmido também serão objetos de pesquisa.

“Estudaremos os impactos do plantio direto em cana nos mais diversos ambientes, solo, volume de chuva e gestão de campo. Os primeiros ensaios devem ocorrer em cooperação com usinas de cana de São Paulo. Depois realizaremos testes semelhantes em outras regiões produtoras como o Cerrado e os Tabuleiros Costeiros do Nordeste”, explica Eugênio.

A Embrapa também participará da construção da Biorrefinaria Virtual de Cana-de-açúcar (BVC). Esta ferramenta de simulação computacional é elaborada pelo CTBE para comparar a sustentabilidade econômica, social e ambiental de rotas tecnológicas no âmbito de uma biorrefinaria, identificando seu estágio de desenvolvimento e permitindo sua otimização. O desenvolvimento da BVC tem a participação de uma Rede de Instituições (coordenada pelo CTBE). A Embrapa vai coordenar a sub-rede agrícola desta rede.

A colaboração entre o CTBE e Embrapa poderá ter continuidade ainda nas áreas de produção de enzimas para a hidrólise do bagaço de cana, bioquímica e fisiologia de plantas, fixação de nitrogênio e captação de CO2 feita pela planta.

© Webioenergias.com.br , com informações da Agência Fapesp e da Embrapa

segunda-feira, janeiro 11th, 2010 | Author: admin

On Friday, Jan. 29, DuPont Danisco Cellulosic Ethanol LLC (DDCE) and University of Tennessee/Genera Energy LLC will hold a grand opening celebration for one of the nation’s first cellulosic ethanol demonstration plants, and the only one dedicated to converting both agricultural residue and bioenergy crops to fuel ethanol. The facility, located in Vonore, Tenn., has initiated start-up and commissioning and will begin producing ethanol in mid-January.
The 74,000-square-foot facility has the capacity to produce 250,000 gallons of ethanol from corncobs and switchgrass and is preparing DDCE’s innovative integrated technology for commercial production by 2012.
The cellulosic ethanol demonstration plant in Vonore, Tenn., applies innovative integrated technology to convert agricultural residues and dedicated bioenergy crops to ethanol for fuel.
The facility is focused on process and data validation to achieve commercial scale production by 2012. DDCE was established in 2008 to integrate the state-of-the art technologies and engineering expertise of DuPont and Danisco, and today is accelerating commercialization of cellulosic ethanol.
In Tennessee, DDCE has partnered with Genera Energy, which is wholly owned by the University of Tennessee Research Foundation and focuses on developing integrated biomass supply chain solutions and strategic partnerships to support the bioenergy industry in Tennessee. Genera Energy was formed in 2008 as a vehicle to carry out the cellulosic biorefinery activities and capital projects of the UT Biofuels Initiative, a farm-to-fuel business model funded with support from the Tennessee General Assembly to create a renewable energy industry in the state. Genera Energy was specifically created to provide the commercial flexibility needed to develop collaborations and partnerships with private entities with technology or other resources to contribute to the UTBI. Genera Energy has recently expanded its outreach to support the University’s interests in other renewable energy technologies.
Together, DDCE, University of Tennessee/Genera Energy, and the state of Tennessee are developing the technology and bioenergy crop supply chain to establish a thriving renewable fuels industry in the United States.

domingo, dezembro 27th, 2009 | Author: admin

A utilização do bagaço de cana-de-açúcar ocorre principalmente na queima em usinas para gerar energia elétrica. Mas pesquisadores estão desenvolvendo novos usos para o resíduo, que é considerado o mais importante na indústria sucroalcooleira. Uma alternativa é a geração de combustível, no chamado etanol de segunda geração.
O potencial é enorme, especialmente por causa da disponibilidade de matéria-prima. O volume desse subproduto representa cerca de um terço da produção de cana-de-açúcar no Brasil, que vem batendo recordes a cada ano. A safra de 2009, anunciada este mês pelo Ministério da Agricultura, ultrapassa 600 milhões de toneladas de cana-de-açúcar, o que representa em torno de 200 milhões de toneladas de bagaço.
Melhorias genéticas obtidas em laboratório também contribuem para aumentar a biomassa do vegetal. Isso refletirá em plantas de maior porte e, consequentemente, com mais bagaço no fim do processo convencional de produção de açúcar e de etanol.
Foi pensando em dar um tratamento preliminar a esse rejeito que pesquisadores da Faculdade de Engenharia Agrícola da Universidade Estadual de Campinas (Feagri-Unicamp), coordenados pelo professor Luis Augusto Barbosa Cortez, desenvolveram um equipamento capaz de separar esse material heterogêneo em partes semelhantes.
Após a última moenda da cana, o bagaço torna-se praticamente um pó formado de partículas e fibras de vários tamanhos. A porção mais dura dessa mistura é rica em lignina e oriunda da parte externa do caule, sendo praticamente seca. Já o material mais mole é úmido e deriva do interior da planta. Essa é a melhor parte para entrar no processo de produção de etanol, por ser rica em celulose.
“A lignina é mais difícil de degradar, por isso a parte de dentro, com menor teor de lignina, é a ideal para ser submetida à hidrólise”, explicou Cortez, referindo-se ao processo que quebra o açúcar da celulose e o transforma em álcool. “A lignina é um agregador que oferece resistência à quebra das moléculas. Quanto menos lignina contiver o material, mais fácil é o processo de obtenção do álcool celulósico.”
Por isso, a classificação do bagaço obtida por meio da tecnologia desenvolvida pelo grupo da Feagri tende a ganhar cada vez mais importância à medida que avançam as pesquisas sobre a nova geração do etanol.
Criar uma tecnologia para classificar de maneira contínua e automática essas diferentes partes do bagaço da cana foi o desafio dos pesquisadores. Para isso, o grupo contou com o apoio da FAPESP, por meio da modalidade Auxílio à Pesquisa – Regular, e com a participação do professor Guillermo Roca, da Universidade de Oriente, em Cuba, que veio ao Brasil para participar do projeto.
Foram os trabalhos de Roca que estabeleceram os princípios gerais para construção do invento, um tipo de classificador pneumático. Nele, o bagaço é inserido por um orifício diagonal, localizado em sua parte superior, e empurrado por uma válvula rotativa sobre um fluxo constante de ar.
“As partículas grossas são então depositadas no fundo, as de tamanho médio ficam em um coletor na parte intermediária do dispositivo e as menores e mais leves são levadas pelo ar por um tubo curvo até um depósito mais alto”, afirmou Cortez. “Não é preciso preparar o bagaço antes de colocá-lo na máquina”, ressaltou.
Isso faz seu custo operacional ser interessante à indústria. Mesmo antes de se começar a produção do etanol de celulose, a separação do bagaço pode melhorar a qualidade dos vários destinos que esse subproduto tem recebido. A parte seca do bagaço, por exemplo, proporciona uma queima mais uniforme e eficiente para produzir energia termelétrica.
Enquanto a tecnologia não estiver pronta para a indústria, o bagaço continuará sendo empregado na produção de ração animal, fertilizante e, principalmente, de material de queima para alimentar caldeiras geradoras de energia elétrica dentro das usinas. Para isso, ele não recebe nenhum tratamento. “Ele não é sequer secado antes de ser queimado, o que diminui a eficiência da queima”, disse Cortez.
Quando se iniciar a segunda geração do etanol, a parte mais valorizada do bagaço será retirada do depósito inferior do classificador desenvolvido na Unicamp. Por meio de análises, o grupo averiguou que a fração mais grossa tem maior teor de celulose e quantidades menores de lignina, sendo a mais apropriada para a produção do álcool.
Além da indústria sucroalcooleira, o invento poderá ser útil em qualquer ramo de atividade que necessite separar materiais sólidos granulados heterogêneos. Por exemplo, grãos moídos na indústria alimentícia, hidrato de cal, na área de mineração, e o pó resultante da moagem de pedras, na construção civil.
A eficiência e a versatilidade do equipamento motivaram o depósito do pedido de patente por meio da agência de inovação Inova Unicamp.

Agência Fapesp, Fábio Reynol

sábado, novembro 14th, 2009 | Author: admin

At the Great Lakes Bioenergy Research Center in Madison, Wis., researchers are looking to leafcutter ants for new enzymatic processes that will further progress to commercialize cellulosic ethanol. Leafcutter ants, which are found in tropical climates and live in enormous colonies that can number in the millions, have evolved several features over time that make their particular cocktail of enzymes attractive to researchers.
“Our lab is an evolution and ecology lab, and we’re very interested in natural systems that take advantage of lignocellulolytic biomass and use microbes to break down [cellulosic] feedstocks,” said Garret Suen, a post doctoral research fellow at the GLBRC. “If we go to a system that is specialized to produce exactly what it is we’re looking for, we may find something of use.”
Converting plant cell walls into simple sugars, the basic premise for cellulosic ethanol, is a major challenge for scientists. Leafcutter ants, which tend massive fungal gardens of their decaying byproducts, may present a worthwhile solution.
Before receiving a U.S. DOE grant, the GLBRC was already studying the symbiotic relationship between the ants and their fungal gardens. For more than 50 million years, the ants and the fungus have evolved to the degree that if the ants were to die, or are removed from the system, the fungus dies as well, and vice versa. “The fungus-growing ant system is obligate, and one of the most complex symbioses that’s described in nature,” Suen said.
“A mature leafcutter colony can defoliate a tree overnight,” Suen said. With colonies ranging from a few thousand members to several million members, leafcutters are a major pest in the tropics. The ants are especially dangerous for agricultural operations such as orange and papaya plantations. But it is this ability to process huge volumes of biomass that has researchers fascinated.
Traditional corn processing in an ethanol plant involves pretreating with acid, steam or ammonia to break down the bonds of lignin, hemicellulose and cellulose. After that, a cellulase is added to catalyze the cellulolysis of cellulose. Researchers at the GLBRC are studying multiple enzymes used by the ants in the fungal gardens to craft the perfect cocktail for ethanol production. According to Suen, “That cocktail is probably a mixture of about six or seven enzymes. One is definitely a cellulase that does the majority of the breaking of the beta -1,4 glycocitic link between the glucose and cellulose chain. But, then there are other things such as cellulose-binding modules, a protein which binds the cellulose itself, and then allows the cellulase to do its job.”
Using several different enzymes may allow existing ethanol plants to become multi-feedstock facilities–if they can capture the enzymes they need. One difficulty with enzymatic research is that bacteria are exceedingly difficult to grow in a lab. “Right now we can only cultivate about 1 percent of bacteria in the lab,” Suen said. The bacteria that are more difficult to cultivate are typically less aggressive bugs in the growing media and are pushed out by stronger bacteria before they can get a foothold. “[And] if there are 10 enzymes involved in a really efficient breakdown of biomass, is it going to be as efficient if we can only get eight of them?” Suen said.
Research at the GLBRC is providing a new look at some very old progress made in the ants’ natural communities. With the leafcutter ants, the mixture of enzymes works in balance, but that nuanced formula would be nearly impossible to synthesize in a lab. “There is a renaissance, and researchers are going back to natural communities—an area called natural products. These are novel compounds in that no one has ever seen them before,” Suen said.

Ethanol Producer Magazine, Craig A. Johnson

sábado, outubro 31st, 2009 | Author: admin

California-based process technology provider EdeniQ Inc. has announced additional partnerships with ethanol producers to implement the company’s yield enhancement technology. EdeniQ has been conducting commercial trials of its Corn3 yield enhancement program for months and has several producers participating in the first phase of the program.

The company recently expanded its list of production facilities utilizing the technology to include E Energy Adams LLC in Nebraska and Comanche Clean Energy, a Brazilian sugarcane-to-ethanol producer.
EdeniQ’s program is a three-step yield enhancement technology that is expected to ultimately boost ethanol yields by 10 percent.
EdeniQ CEO Larry Gross said each phase of the technology is capable of increasing production yields by one-third of the total 10 percent. Phase one utilizes a patented low-glycerol yeast to boost yields; phase two requires installation of a proprietary milling device to reduce the size of the cornmeal, thus increasing the amount of corn starch; phase three, which is still under development, will include the use of enzymes and can be utilized for cellulosic ethanol production, according to the company. Gross said EdeniQ is in the process of scaling up this phase of its technology and will be ready to deploy it in 2010.

ICM Inc. has been contracted to install EdeniQ’s milling device, the Cellunator, at the E Energy Adams facility. Gross said installation is expected to take up to eight weeks. E Energy Adams CEO Carl Sitzmann said the company chose to install EdeniQ’s technology because enhancing productivity is essential to achieving and maintaining healthy margins. “The technology doesn’t cost much to install, it’s not disruptive to operations and it delivers immediate results to our bottom line,” he said.
The technology agreement formed between EdeniQ and Comanche marks EdeniQ’s entry into the Brazilian market and may also signify a shift in Brazil’s technology mindset. Comanche Chairman Thomas Cauchois said his company has taken a different approach to production than some of the other producers and is more open to technology and risks. However, he believes that is about to change. “We are beginning to see a period of change in the industry,” he said. “The sector has become more competitive and needs to invest in environmental and worker safety and that means you have to strive for greater industrial and agricultural efficiency in Brazil. The sector is not set up to do that. Many plants are very old and many companies are not willing to take risk. [However,] there is a wave of industrial efficiency coming through Brazil right now.”
Comanche was founded in 2007 and currently operates two sugarcane-to-ethanol production facilities with a combined production capacity of 170 million liters (45 million gallons). Cauchois said EdeniQ began running tests at Comanche plants in April and received good results. The technology used for sugarcane-based ethanol is different than corn-based ethanol, but the end result is still expected to be an approximate 10 percent increase in yield, according to EdeniQ. Cauchois said the Comanche facilities are currently operating with the first phase of the technology and yield improvements have been positive and are increasing as formulations have been tweaked.
EdeniQ’s ultimate goal is to assist first-generation producers to improve their processes as a way to open the door to wide-scale cellulosic ethanol production, according to Gross. “EdeniQ has always viewed the movement from legacy ethanol production to cellulosic production as an evolutionary process,” he said. “Given the current financial environment, migrating the billions of dollars of capital deployed in today’s corn and sugarcane ethanol industries toward more advanced production makes a lot of sense. Our first suite of yield enhancement technologies helps producers all over the world shore up their financial and environmental results, which, in turn lets them make additional investments in next-generation technologies.”

Ethanol Producer Magazine

quinta-feira, julho 23rd, 2009 | Author: admin

Uganda may be producing bioethanol from non-food crops within a year, say scientists.
A research programme led by the National Crop Resources Research Institute (NaCRRI) is using a wide range of cellulosic feedstocks such as elephant grass, cassava and wood.
The production of ethanol from cellulose is more difficult than from food crops, since it requires the complex carbohydrates in cellulose to be broken down into simpler sugars before conversion to ethanol can begin.
But since humans cannot digest cellulose, there is no danger of biofuel production competing with food crops. ‘We should not compete with food resources. That is why we are going for non-traditional food crops,’ explains lead researcher Yona Baguma.
Uganda has abundant reserves of fossil fuels, but it has yet to develop the infrastructure to exploit them.
The initial investment required for biofuel production is much lower and the time for development much shorter. NaCRRI is optimistic that the research phase will produce positive results early next year and commercial development can begin shortly afterwards.
The Ugandan Government proposes that, when fossil fuel exploitation does begin, Uganda should oblige oil companies to blend fossil oil with bioethanol, lengthening the wells’ lives as well as reducing carbon emissions.

quinta-feira, julho 16th, 2009 | Author: admin

A new Worldwatch Institute report provides a survey of the most recent developments in the rapidly evolving U.S. biofuels industry as well as policy recommendations for the expansion of biofuels that are far more sustainable.
Red, White, and Green: Transforming U.S. Biofuels offers an assessment of the policies, technologies, and market factors that have driven the rapid growth of the industry over the past decade, as well as recent developments that have left some 21 percent of U.S. annual capacity idled in the first months of 2009.
In addition to the impacts associated with large-scale production of “first-generation” biofuels such as corn-based ethanol and soy biodiesel, the report highlights the potential of “second-generation” fuels such as cellulosic ethanol and “third-generation” fuels such as algae biodiesel.
Among the recommendations, the reports calls for reducing the ethanol import tariff, pointing that “expanding the U.S. ethanol supply to include more sugarcane ethanol imports from Brazil could reduce pressure on U.S. cropland, reduce the costs of corn, and provide greater climate benefits.”
Here are the report’s “recommendations for spurring rapid development of cellulosic and advanced biofuels:
- use existing and new economic instruments, such as the blending tax credits, to spur devel-opment of advanced biofuels, and phase out incentives for corn ethanol.
- base the tax credits for ethanol and biodiesel on performance, with fuels that achieve deeper greenhouse gas emissions reductions eligible for greater support. Or, set a floor for government support that requires lifecycle reductions of at least 50 percent or better.
- revisit the Renewable Fuel Standard mandate to ensure that it will promote second-generation biofuels instead of propping up first-generation biofuels.
- lower or eliminate the ethanol import tariff for fuels that meet sustainability criteria.

sábado, julho 11th, 2009 | Author: admin

Experiments are being conducted into how microbes can be used to convert sugars to ethanol and mixed-generation fuels. The topic was discussed at the recent meeting of the American Society for Microbiology.

According to Tim Donohue, a professor of bacteriology at the University of Wisconsin-Madison, researchers are looking at alternative biomass as feedstocks for microorganisms to ferment into ethanol. The challenge is unlocking the sugars from the cellulosic biomass.
Microbes may be a big player in developing renewable fuels from cellulosic materials, and experiments are being conducted into how they can be used to convert sugars to ethanol and mixed-generation fuels. The topic was discussed at the recent meeting of the American Society for Microbiology.
Manufacturing ethanol from corn competes with food crops and has been accused of being responsible for rising food prices, according to the ASM. “The value of using nonfood crops is it will mitigate the significant food-versus-fuel debate,” said Tim Donohue, professor of bacteriology at the University of Wisconsin-Madison, and director of the U.S. DOE’s Great Lakes Bioenergy Research Center.
Researchers are looking at alternative biomass as feedstocks for microorganisms to ferment into ethanol, Donohue said. The most attractive is lignocellulosic biomass—wood residues, municipal paper waste, energy crops, or nonedible parts of corn such as cobs, stalks and stover.
“The same microbial activities used to generate ethanol from starch today can be used to generate ethanol and next-generation fuels from cellulosic feedstocks in the future,” Donohue said.
The challenge is unlocking the sugars from the cellulosic biomass. Martin Keller, DOE Bioenergy Research Center director, and his team at Oak Ridge National Laboratory use an adapted method of high-throughput screening to rapidly test poplar tree samples for their ability to give up sugars. Some are more likely to release their sugars than others, which
Keller says could be because of genetics, environmental factors, or a combination of both. The team is growing poplar saplings in controlled environments to learn more, he said. They chose poplars because they grow quickly and in many different areas, Keller said, adding that his team also is experimenting with switchgrass.
Breaking down cellulosic biomass is an expensive process, but once that is overcome, several companies are ready to move forward with production, according to ASM.
Keller’s team is also studying Anaerocellum, a bacterium found in a hot spring in Yellowstone. The bacterium grows at 80 degrees Celsius (176 degrees Fahrenheit) and can not only break down the cellulosic biomass to sugars, but it can also ferment it into acetate and ethanol, according to ASM. “This is called consolidated bioprocessing,” Keller said. “This is only one strain that can do this, but none of the strains we have so far is perfect. You still need to optimize the strain. For instance, our strain is producing more acetate than ethanol.”
Besides ethanol and biodiesel, researchers are also looking at producing hydrogen from renewable resources. Donohue and his lab are working with purple bacteria called Rhodobacter sphaerides that use photosynthesis to produce hydrogen. The hydrogen can then be converted to electricity using fuel cells the lab is developing. “On a laboratory scale, we can use sunlight and renewable waste to generate electricity in microbial reactors,” Donohue said. Patents are pending, and he said the team does not have industrial-scale capacity for the project.
The most exciting part of current studies at the DOE energy research centers is the wide variety of disciplines represented by the researchers, Keller said, from molecular experts to chemists and engineers. “This has never existed before, bringing everyone together to target the problems we want to solve,” he said “This will explode even more in the next couple years,” he said.

domingo, julho 05th, 2009 | Author: admin

 

 

USDA to support farmers for developing cellulosic ethanol

The US Department of Agriculture could offer US farmers greater financial incentives for developing cellulosic ethanol projects. The USDA announced it would guarantee $80 million (€57 million) in loans for the production of cellulosic ethanol.
Increased biofuel production will be necessary as the industry works to comply with current national energy policy, which is drawn to wean consumers off their reliance on fossil fuels.
‘Our organisation has always supported the development of renewable energy, but what’s great about the current round of funding from USDA is that it targets the development of cellulosic technologies,’ Texas Fannin County Farm Bureau president Jerry Magness says. ‘Instead of relying solely on our row crops, cellulosic biofuels are made from wood chips, switchgrass and crop stubble, things that had no real value to farmers previously.’


US DoE to fund cellulosic ethanol plant


Energy giant BP and cellulosic ethanol developer Verenium have been selected by the US Department of Energy (DoE) to enter the due diligence phase of its Title XVII Loan Guarantee Programme. The project is entitled to a loan guarantee from the DoE, which would support debt funding for first commercial-scale cellulosic ethanol plant, covering up to 80% of eligible costs.
‘We believe this signals an important endorsement of our cellulosic process technology and a strong show of support for the advancement of next-generation biofuels,’ Carlos A. Riva, president and CEO at Verenium, says.
The Highlands project is scheduled to break ground in 2010.